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Mechanisms of ergodic torus destruction and appearance of strange nonchaotic attractors
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We present the results of the computer simulation of the dynamics of an invertible two-dimensional ring
map with quasiperiodic excitation. The bifurcation diagram of the system on the parameter plane has been
constructed. We analyze the mechanisms of the destruction of quasiperiodic regimes and the role of strange
nonchaotic attractoréSNA) in this process. Two mechanisms of SNA appearance are discussed. We verify the
existence of SNA via bifurcational analysis of the approximating sets of the attractor.

PACS numbsgs): 05.45:+b, 02.60.Cb

. INTRODUCTION two-frequency quasiperiodicity

Recently interest in the study of self-oscillatory systems  —three-frequency quasiperiodicitySNA—chaos,
with quasiperiodic external forcing.e., the forcing by the
signal with two incommensurate frequengiéms appeared.
The_simplest attractor_in such systems is an erquic t_or“ﬁ/vo-frequency quasiperiodicity
T2 (in terms of map, it corresponds to a closed invariant
curve. Quasiperiodic motion o2 can undergo a finite —SNA—three-frequency quasiperiodicitychaos.
number of period doubling bifurcations and can be destroyed S
as a result of torus fractalization and the appearance of chaos But we have to note that three-frequency quasiperiodicity
[1-4]. According to[3] the so-called fractal torus exists only iS NOt & necessary stage on the route to chaos or to the non-
at the chaos boundary. Besides the quasiperiodic and chaof$aotic strange attractor. The transition frdfito SNA and
attractors, the strange nonchaotic attra¢8MA) can existin ~ chaos can be observed in the systems where the three-
systems with quasiperiodic excitation over the sets of posifrequency quasiperiodic motion cannot exist, for example, in
tive measure in parameter spd&e-11. SNA is character- the quasiperiodically driven logistic magp5].
ized by the fractal geometric structure but the trajectory di- Thus, the following questions remain: What is the con-
vergence on it is absent. The motion on SNA has a singulaiection between the appearance of SNA and the process of
continuous spectrum and decreasing autocorrelation functiofte destruction of the two-dimensional ergodic torus? Is the

[6—12). The capacity dimension of SNA differs greatly from fractal torus of Kanek¢3] the same object as SNA? How is
its information dimensio13,14). the transition from strange nonchaotic attractor to strange

The mechanisms of SNA formation still are not under-chaotic attractor accomplished? To answer these questions
stood Comp|ete|y_ One of the possib|e ways for the SNA tothe mechanisms of invariant curve destruction in the map
emerge is described [115]. It is as follows: the two bands of With the quasiperiodic excitation are analyzed in this paper in
a doubled torus are separated by an unstable ténuthe detail. In Sec. Il we introduce the quasiperiodically forced
case of a one-dimensional map with the quasiperiodic forcting map and give a survey of the behavior observed in this
ing) or by a stable manifold of a saddle tor(is the general model. Section Ill is devoted to a detailed analysis of the
case. A variation of the bifurcation parameter leads to thetransition to chaos. Finally, the results are summarized in
doubled torus becoming wrinkled and touching the separaSec. IV.
trix. The separatrix is destroyed and the two bands of the
torus merge. At this moment the doubled torus transforms Il. BASIC MODEL
into the fractal set while the largest nonzero Lyapunov ex-
ponent of the motion remains negative. But this mechanis

and the other one considered[iti7] is

The quasiperiodically forced ring map has the following

of SNA formation cannot be universal because SNA is ob-°"™"
serve_d als_o_without preliminary torus doubling or band- X,1o 1= X, Q — KI2wsin 2mX,) + yY,,
merging crisis.

The role of SNA in the transition from the quasiperiodic +Acog27Z,), mod 1
regime to chaos is not still absolutely clear. Two routes to
chaos from ergodic two-dimensional torus were proposed. Yoie1=vYn—K2asin(27X,), @
One of them described irL6] is as follows:

Zni1=Zptw, mod 1,

* Electronic address: wadim@chaos.ssu.runnet.ru where (), K, y are the internal parameters of the system.
IEIectronic address: tanya@chaos.ssu.runnet.ru K is the parameter of nonlinearity) is the parameter con-
Electronic address: olga@chaos.ssu.runnet.ru; to whom corrdrolling the natural winding numbe® of the systemy char-
spondence should be addressed. acterizes the dissipation degree. When0.01 the dynamics
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of the map(1) is practically the same as the dynamics of the
well-known circle map with the quasiperiodic excitation:

Xni1=Xn+Q—=K/27sin(27X,)+Acog27Z,), mod 1,
Zyi1=Zp+o®, mod 1. 2

In contrast to the systeri2) the system(1) is invertible and,
therefore, it corresponds to the Poincare section of the flow.
The parameter8 andw are the amplitude and the frequency
of the external forcing, respectively. The forcing is quasip-
eriodic because of the presence of two incommensurate fre-
guencies, here they are 1 and

Forcing frequencyw is irrational and chosen to be equal 10 (b)
to golden meam = ( \/E— 1)/2. It depends o) whether the
three-frequency quasiperiodic motio® or the two-
frequency quasiperiodic motioqT? is observed in the sys-
tem (1). The attractomT? corresponds to the synchroniza- X 05 . —
tion regions with the internal winding numbep=p/q, '
wherep and g are the integer numbers. The numloede-
fines the number of the invariant curve bands. The ergodic
motion onqT? in the synchronization region is the rough
regime because the is fixed and has an irrational value. 0.0 %00 0.006
When the parametes andK are varied the destruction of ' .Z
the invariant curvegT? and the transition to chaos can be o
observed. 1.0

0.012

()

Ill. MECHANISMS OF INVARIANT CURVE
DESTRUCTION AND THE APPEARANCE OF SNA

Let us consider the destruction of the invariant curve
qT2. We keepQ=0.5 (when Q=0.5) andA=0.4 and in-
crease the parametlr. At the beginning the smooth curve
has two bands. The phase point visits each of them exactly in e
one iteration of the map. When the paraméteis increased, 0-8‘000 0,006 0012
the distortion of the shape of the invariant curve takes place.

For K=K;=1.030 two bands of the invariant cunggT? o

merge. The regularity of the phase point’s visiting two bands

of the attractor is broken. The attractor arising after the merg- FIG. 1. (@) ZX projections of the attractor an),(c) its ap-

ing crisis is like the fractal set. Meanwhile, the largest non-proximating sets with »=55/89 for (=0.5, A=0.4, and
zero Lyapunov exponent remains negative during and aftdf =1.029. The phase projections of the attractor were obtained for
the crisis as noted ifiL5]. each second iteration and correspondi_ng approximating sets were

To give reliable evidence of the existence of SNA for constructed for evetb) and odd(c) iterations.

K>K; the rational approximation method proposed 18]

was used. This method is as follows: The irrational value ofattractors, respectively. To distinguish the moment of the ap-
w=(\/§—l)/2 is replaced by the rational approximation pearance of SNA via the band merging crisis we represent
o =F¢/F.1, whereF,=1,1,2,3,5. ... are theFibonacci the phase portraits only for each second iteration. The attract-
numbers. In this case the limit set is the cycle with the periodng set for the rational approximatiom=55/89 is con-
Fi+1. Equation(l) is a periodically[with periodF(k+1)]  structed for even and odd iteration numbers. Rer 1.029
forced map and it can have an attractor that depends on thie invariant curvdFig. 1(a)] as well as the approximating
initial phaseZ,. The dependenci(Z,) represents the so- set[Figs. 1b), 1(c)] have two bands. Because the attracting
called approximating attracting set whetds the coordinate set of the rational approximation is smooth, there exists the
of limit set points for eachZ, from the interval quasiperiodic motion on P2 in the system(1) for this pa-
[0;1F,1]. As shown in[18] if the approximating set is rameter value. FOK=1.031 the phase portrait of the attrac-
nonsmooth for sufficiently largk, or the maximum deriva- tor has the same shapEig. 2(a)] as would be obtained for
tive maX{dX;/dZ,}, where]j belongs to all bands of the each iteration. This fact gives evidence that the band merging
attracting set, grows indefinitely withthen for the irrational  crisis has taken place. In this case, the approximating set has
value ofw [w=limy_ .(Fx/Fy+1)] the system has an attrac- an interesting structure: two bands are sewed together over
tor that is not piecewise differentiable and, hence, it isthe same parts; i.e., there is a common set of points for even
strange(chaotic or nonchaot)d5]. and odd iteration numbef§igs. 2b), 2(c)]. The smoothness

Figures 1 and 2 show nonstrange and strange nonchaotid the approximating set is broken at the ends of these
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FIG. 3. Two bands of the approximating attracting set with
com———— w=610/987 for the attractor fof=0.5, A=0.4, K=1.031.
‘O -—/I I
0.000 0.006 0.012 obtained from the mafil) applied fork+1 times. This map

Zo depends not only on the parameters of the rfigbut also
on the initial phas&,. Taking into account a very insignifi-
o ) cant dependence of variabd on variableY for a small
FIG. 2. (a) ZX projections of the attractor anh),(c) its ap-  yajye of the parametey (the case of strong dissipatjom

proximating sets with w=55/89 for =05, A=04, and = o gysien(1) the map may be represented in the followin
K=1.031. The phase projections of the attractor were obtained fo{)ne-(%/imerr?siz)nal forn?‘ y P g

each second iteration and corresponding approximating sets were
constructed for everb) and odd(c) iterations.

Xn+1=G6k(X,,Zp). 3
“sewed” parts and the fractal attractor arises in the system n+1= GlXn Z0) @

(1). Because the largest nonzero Lyapunov expongnte-
mains negative, it is a strange nonchaotic attractor. Further The behavior of the points of the approximating set is
increasing the paramettrleads to the complete merging of determined by the mag3). During the destruction of the
two bands of the attractor. The approximating set becomefmvariant curve the dependence pbecomes essential. The
everywhere unifiedfor even or odd iterationsi.e., for each  character of the return functidfrig. 4) corresponding to the
Z, there exists only one value of. approximating set shown in Fig. 3 is quite different for two
To confirm the nonsmooth properties of the attractor aftevalues ofZ,. In the case 0Zy=0 the map(3) has the stable
band merging, let us construct the approximating set folimit cycle with period 2[Fig. 4(a)], while in the case of
»=610/987. The approximating sets of the attractor withZy=0.00014 it has the stable fixed pofiftig. 4(b)].
two bands forK =1.031 are given in Figs.(8), 3(b). It is The method of rational approximation fes=610/987
clearly seen that the character of the approximating set of theas shown that for parameter valu@s=0.5, A=0.4 the
attractor is the same as fas=55/89[Figs. db), 2(c)]. In  strange nonchaotic attractor that appears via the band merg-
Fig. 3 we can distinguish the parts of two bands that aréng exists only forK e[K,K5,]. For K>K, the attractor
sewed. They are marked by the dashed lines. becomes again regular and represents the piecewise differen-
Let us consider the point of the attracting set for the ra-tiable manifold. This manifold is not homeomorphic to the
tional approximationw,=F,/F,,., corresponding to the smooth invariant curve because it has the points of disconti-
fixed value ofZ,. It is the fixed point of a certain map that is nuity. With the further increase dk the chaotic attractor
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04 | e
I 7 i chaos boundartit corresponds to the appearance of the posi-
02 .- tive Lyapunov exponeit The regions with different dynam-
0.0 L ics are marked by the following numbers: 1 is the region
0.0 02 0.4 0.6 0.8 where the smooth invariant curv@ 2 exists; 2 is the region
X(n) where either the SNA or piecewise differentiable attractor is

observed; 3 is the chaotic region. The line of the band merg-
ing |, crosses the chaos boundagy It means that the band

FIG. 4. Map G(X) for w=610/987, 1=0.5, A=0.4,  merging crisis does not always precede the appearance of
K=1.031, andZ,=0 (a); Zo=0.00014(b). chaos. How is the invariant curve destroyed in this case?

Evidently it is destroyed as a result of the gradual fractaliza-
emergegfor K=1.520 the largest nonzero Lyapunov expo-tion process described {i8]. In Fig. 5 the curvd, is the
nent becomes positiyeProbably, the arising of SNA for the boundary of the appearance of SNA via gradual fractaliza-
second time precedes chaos. tion.

Thus, we have considered one of the possible bifurca- Let us consider in detail the process of gradual fractaliza-
tional sequences for the transition from the smooth ergodition of the ergodic invariant curve. It is convenient to choose
torus to chaos: the destruction of the torus via the band mergd =0.1 because the invariant curve has one band. The am-
ing crisis and development of SNA; degradation of SNA to aplitude of excitation is fixed £=0.3) and the nonlinearity
piecewise differentiable manifold with a finite number of parameteK is changed. With the increase Kf the distor-
points of discontinuity; the fractalization of the attractor for tions of the invariant curve are observed. The so-called torus
the second time and the appearance of the chaotic attract@scillations take plac¢3]. The scale of these oscillations
However, SNA arisen via the band merging is not obliged tobecomes smaller and smaller until the invariant curve is de-
degenerate to the regular attractor and can develop immedétroyed. Fork =K ~=2.0295 the largest nonzero Lyapunov
ately to the chaotic attractor. Such a scenario takes place, f@ixponent\ ; becomes positive. The trajectory divergence ap-
example, forQ=0.5, A=0.15 with the increase of the pa- pears. Does the fractal set arise at the same moment or does
rameterK. The destruction of the invariant curve and theit happen earlier? In other words, does the strange nonchaotic
appearance of SNA can also be the result of merging of twattractor precede chaos? According [#] the fractal set
different tori coexisting in the phase space of the system. Themerges only on the chaos boundary and, therefore, SNA
crisis of the torus in such a case is also connected with thexists for only one value oK (for the fixed value ofA).
separatrix destruction and it is similar to the band mergingHowever, in spite of the results of the precise numerical in-
crisis described above. In the systéihthe merging crisis of  vestigations given if4] such a conclusion causes doubt.
two different tori is observed, for example, f@®=0.5,  Figure 6 showsZX projections of attractors and their ap-
A=0.3. For 1.04K<1.05 two invariant curves'IZ% and  proximating sets for the rational approximatiar= 610/987
2T§ possessing the mutual symmetry X-61—X; andK=2.029(a), K=2.050(h). In case(a) the largest non-
Z—Z+0.5) merge together. The arisen fractal set graduallgero Lyapunov exponent is negative and equals
transforms to chaos. N1=—0.011489. Caséb) corresponds to the chaotic dynam-

Figure 5 shows the fragment of the bifurcation diagram ofics with A= +0.048767. The approximating sets in cases
the system(1) on the parameter planeA(K) for Q=0.5. (a) and (b) are not apparently everywhere differentiable
The following bifurcation lines are shown on the diagram: manifolds and this confirms the nonsmooth properties of the
I, is the line of the band merging of the invariant curkgis  attracting set.
the line of merging of two different invariant curvds;is the Let us consider the largest Lyapunov exponerﬁ'f),
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FIG. 6. XZ projections of the attractors and their approximatingthe ergodic motion is like the result of averaging the

SKeiSZ_\g'Stg(‘;).: 610/987 for 0=0.1, A=0.3, andK=2.029 (a; LyapunoL/ exponenk (' over all values ofZ e[0,1/F . 4].
While A{<0 for most values o,, the Lyapunov expo-
. ) N . ) nentA, of ergodic motion remains negative. When the set of
which characterizes the stability of motion corresponding toZ0 for which A(lk)(zo)>0 begins to prevail the ergodic mo-

the rational approximation Oloy=Fy/Fy.,. The calcula- oy pecomes chaotic. Figurécy corresponds to the chaotic
tions (they were performed fow=610/987 and 987/1597  atractor in the case when the conditinfl?(Z,)>0 is ful-

for K=2.020 and 2.029 show that the Lyapunov exponentjjied for all Zs.

A{ can be both positive and negative depending on the Tphys in case$a) and (b) the local divergence of trajec-
choice of the initial phas@,. The dependence of! on  tories on the attractor takes place though the global trajectory
Z, obtained for the rational approximatian=610/987 and  divergence is absent. The attractor in such a case can be
for the three values of nonlinearity paramet€r=2.020, neither chaotic nor regular. Hence, we can propose that the
K=2.029, andK=2.050 are presented in Figs(a/-7(c), attractor forK=2.020 is strange and the fractalization pre-
respectively. In casesa) and (b) when SNA exists the cedes chaos. The transition to chaos is realized gradually via
Lyapunov exponenh(lk) changes its sign depending @g. the appearance of the local trajectory divergence.

Hence, for some values &, the mapG,(X) has chaotic The Lyapunov exponent{ mentioned above has a simi-
dynamics. The number of points &, for which A{">0 lar sense to the local Lyapunov exponent introducefil 5]
increases ak approaches the critical valu€,, correspond- and the transient Lyapunov expondd®]. In fact, for the

ing to the transition to chaos. The Lyapunov exponenbf  calculation of the Lyapunov exponeki of ergodic motion
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during the finite time the result will be close x4¥ because Thus, the destruction of the ergodic torus always results in
the points of the attractor received by iteration during somdéhe appearance of a fractal set without trajectory divergence,
time will lie near to the points of the approximating set. As which can then develop to chaos. Therefore, the regime of
shown in[18] the presence of the positive local Lyapunov SNA is typical for systems with quasiperiodic excitation. The

exponent is the sufficient condition for the existence of thechaotization of motion on the strange attractor is accom-

fractal set(though it is not necessary plished gradually, beginning with the appearance of the local
trajectory divergence, which becomes prevalent over all at-
IV. CONCLUSIONS tractors with the transition to chaos. The results obtained for

The fulfilled investigations allow one to conclude that other model systems confirm these conclusidr)

there are two universal routes to the destruction of an ergodic
two-dimensional torus:
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