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We present the results of the computer simulation of the dynamics of an invertible two-dimensional ring
map with quasiperiodic excitation. The bifurcation diagram of the system on the parameter plane has been
constructed. We analyze the mechanisms of the destruction of quasiperiodic regimes and the role of strange
nonchaotic attractors~SNA! in this process. Two mechanisms of SNA appearance are discussed. We verify the
existence of SNA via bifurcational analysis of the approximating sets of the attractor.

PACS number~s!: 05.45.1b, 02.60.Cb

I. INTRODUCTION

Recently interest in the study of self-oscillatory systems
with quasiperiodic external forcing~i.e., the forcing by the
signal with two incommensurate frequencies! has appeared.
The simplest attractor in such systems is an ergodic torus
T2 ~in terms of map, it corresponds to a closed invariant
curve!. Quasiperiodic motion onT2 can undergo a finite
number of period doubling bifurcations and can be destroyed
as a result of torus fractalization and the appearance of chaos
@1–4#. According to@3# the so-called fractal torus exists only
at the chaos boundary. Besides the quasiperiodic and chaotic
attractors, the strange nonchaotic attractor~SNA! can exist in
systems with quasiperiodic excitation over the sets of posi-
tive measure in parameter space@5–11#. SNA is character-
ized by the fractal geometric structure but the trajectory di-
vergence on it is absent. The motion on SNA has a singular
continuous spectrum and decreasing autocorrelation function
@6–12#. The capacity dimension of SNA differs greatly from
its information dimension@13,14#.

The mechanisms of SNA formation still are not under-
stood completely. One of the possible ways for the SNA to
emerge is described in@15#. It is as follows: the two bands of
a doubled torus are separated by an unstable torus~in the
case of a one-dimensional map with the quasiperiodic forc-
ing! or by a stable manifold of a saddle torus~in the general
case!. A variation of the bifurcation parameter leads to the
doubled torus becoming wrinkled and touching the separa-
trix. The separatrix is destroyed and the two bands of the
torus merge. At this moment the doubled torus transforms
into the fractal set while the largest nonzero Lyapunov ex-
ponent of the motion remains negative. But this mechanism
of SNA formation cannot be universal because SNA is ob-
served also without preliminary torus doubling or band-
merging crisis.

The role of SNA in the transition from the quasiperiodic
regime to chaos is not still absolutely clear. Two routes to
chaos from ergodic two-dimensional torus were proposed.
One of them described in@16# is as follows:

two-frequency quasiperiodicity

→three-frequency quasiperiodicity→SNA→chaos,

and the other one considered in@17# is

two-frequency quasiperiodicity

→SNA→three-frequency quasiperiodicity→chaos.

But we have to note that three-frequency quasiperiodicity
is not a necessary stage on the route to chaos or to the non-
chaotic strange attractor. The transition fromT2 to SNA and
chaos can be observed in the systems where the three-
frequency quasiperiodic motion cannot exist, for example, in
the quasiperiodically driven logistic map@15#.

Thus, the following questions remain: What is the con-
nection between the appearance of SNA and the process of
the destruction of the two-dimensional ergodic torus? Is the
fractal torus of Kaneko@3# the same object as SNA? How is
the transition from strange nonchaotic attractor to strange
chaotic attractor accomplished? To answer these questions
the mechanisms of invariant curve destruction in the map
with the quasiperiodic excitation are analyzed in this paper in
detail. In Sec. II we introduce the quasiperiodically forced
ring map and give a survey of the behavior observed in this
model. Section III is devoted to a detailed analysis of the
transition to chaos. Finally, the results are summarized in
Sec. IV.

II. BASIC MODEL

The quasiperiodically forced ring map has the following
form:

Xn115Xn1V2K/2psin~2pXn!1gYn

1Acos~2pZn!, mod 1

Yn115gYn2K/2psin~2pXn!, ~1!

Zn115Zn1v, mod 1,

whereV, K, g are the internal parameters of the system.
K is the parameter of nonlinearity,V is the parameter con-
trolling the natural winding numberQ of the system,g char-
acterizes the dissipation degree. Wheng50.01 the dynamics
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of the map~1! is practically the same as the dynamics of the
well-known circle map with the quasiperiodic excitation:

Xn115Xn1V2K/2psin~2pXn!1Acos~2pZn!, mod 1,

Zn115Zn1v, mod 1. ~2!

In contrast to the system~2! the system~1! is invertible and,
therefore, it corresponds to the Poincare section of the flow.
The parametersA andv are the amplitude and the frequency
of the external forcing, respectively. The forcing is quasip-
eriodic because of the presence of two incommensurate fre-
quencies, here they are 1 andv.

Forcing frequencyv is irrational and chosen to be equal
to golden meanv5(A521)/2. It depends onV whether the
three-frequency quasiperiodic motionT3 or the two-
frequency quasiperiodic motionqT2 is observed in the sys-
tem ~1!. The attractorqT2 corresponds to the synchroniza-
tion regions with the internal winding numberQ5p/q,
wherep andq are the integer numbers. The numberq de-
fines the number of the invariant curve bands. The ergodic
motion onqT2 in the synchronization region is the rough
regime because thev is fixed and has an irrational value.
When the parametersA andK are varied the destruction of
the invariant curveqT2 and the transition to chaos can be
observed.

III. MECHANISMS OF INVARIANT CURVE
DESTRUCTION AND THE APPEARANCE OF SNA

Let us consider the destruction of the invariant curve
qT2. We keepV50.5 ~whenQ50.5) andA50.4 and in-
crease the parameterK. At the beginning the smooth curve
has two bands. The phase point visits each of them exactly in
one iteration of the map. When the parameterK is increased,
the distortion of the shape of the invariant curve takes place.
For K5K1.1.030 two bands of the invariant curveqT2

merge. The regularity of the phase point’s visiting two bands
of the attractor is broken. The attractor arising after the merg-
ing crisis is like the fractal set. Meanwhile, the largest non-
zero Lyapunov exponent remains negative during and after
the crisis as noted in@15#.

To give reliable evidence of the existence of SNA for
K.K1 the rational approximation method proposed in@18#
was used. This method is as follows: The irrational value of
v5(A521)/2 is replaced by the rational approximation
vk5Fk /Fk11 , whereFk51,1,2,3,5, . . . . are theFibonacci
numbers. In this case the limit set is the cycle with the period
Fk11 . Equation~1! is a periodically@with periodF(k11)#
forced map and it can have an attractor that depends on the
initial phaseZ0 . The dependenceX(Z0) represents the so-
called approximating attracting set whereX is the coordinate
of limit set points for each Z0 from the interval
@0;1/Fk11#. As shown in@18# if the approximating set is
nonsmooth for sufficiently largek, or the maximum deriva-
tive max$dXj /dZ0%, where j belongs to all bands of the
attracting set, grows indefinitely withk then for the irrational
value ofv @v5 limk→`(Fk /Fk11)# the system has an attrac-
tor that is not piecewise differentiable and, hence, it is
strange~chaotic or nonchaotic! @5#.

Figures 1 and 2 show nonstrange and strange nonchaotic

attractors, respectively. To distinguish the moment of the ap-
pearance of SNA via the band merging crisis we represent
the phase portraits only for each second iteration. The attract-
ing set for the rational approximationv555/89 is con-
structed for even and odd iteration numbers. ForK51.029
the invariant curve@Fig. 1~a!# as well as the approximating
set @Figs. 1~b!, 1~c!# have two bands. Because the attracting
set of the rational approximation is smooth, there exists the
quasiperiodic motion on 2T2 in the system~1! for this pa-
rameter value. ForK51.031 the phase portrait of the attrac-
tor has the same shape@Fig. 2~a!# as would be obtained for
each iteration. This fact gives evidence that the band merging
crisis has taken place. In this case, the approximating set has
an interesting structure: two bands are sewed together over
the same parts; i.e., there is a common set of points for even
and odd iteration numbers@Figs. 2~b!, 2~c!#. The smoothness
of the approximating set is broken at the ends of these

FIG. 1. ~a! ZX projections of the attractor and~b!,~c! its ap-
proximating sets with v555/89 for V50.5, A50.4, and
K51.029. The phase projections of the attractor were obtained for
each second iteration and corresponding approximating sets were
constructed for even~b! and odd~c! iterations.
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‘‘sewed’’ parts and the fractal attractor arises in the system
~1!. Because the largest nonzero Lyapunov exponentl1 re-
mains negative, it is a strange nonchaotic attractor. Further
increasing the parameterK leads to the complete merging of
two bands of the attractor. The approximating set becomes
everywhere unified~for even or odd iterations!; i.e., for each
Z0 there exists only one value ofX.

To confirm the nonsmooth properties of the attractor after
band merging, let us construct the approximating set for
v5610/987. The approximating sets of the attractor with
two bands forK51.031 are given in Figs. 3~a!, 3~b!. It is
clearly seen that the character of the approximating set of the
attractor is the same as forv555/89 @Figs. 2~b!, 2~c!#. In
Fig. 3 we can distinguish the parts of two bands that are
sewed. They are marked by the dashed lines.

Let us consider the point of the attracting set for the ra-
tional approximationvk5Fk /Fk11 corresponding to the
fixed value ofZ0 . It is the fixed point of a certain map that is

obtained from the map~1! applied fork11 times. This map
depends not only on the parameters of the map~1! but also
on the initial phaseZ0 . Taking into account a very insignifi-
cant dependence of variableX on variableY for a small
value of the parameterg ~the case of strong dissipation! in
the system~1! the map may be represented in the following
one-dimensional form:

Xn115Gk~Xn ,Z0!. ~3!

The behavior of the points of the approximating set is
determined by the map~3!. During the destruction of the
invariant curve the dependence onZ0 becomes essential. The
character of the return function~Fig. 4! corresponding to the
approximating set shown in Fig. 3 is quite different for two
values ofZ0 . In the case ofZ050 the map~3! has the stable
limit cycle with period 2 @Fig. 4~a!#, while in the case of
Z050.00014 it has the stable fixed point@Fig. 4~b!#.

The method of rational approximation forv5610/987
has shown that for parameter valuesV50.5, A50.4 the
strange nonchaotic attractor that appears via the band merg-
ing exists only forKP@K1 ,K2#. For K.K2 the attractor
becomes again regular and represents the piecewise differen-
tiable manifold. This manifold is not homeomorphic to the
smooth invariant curve because it has the points of disconti-
nuity. With the further increase ofK the chaotic attractor

FIG. 2. ~a! ZX projections of the attractor and~b!,~c! its ap-
proximating sets with v555/89 for V50.5, A50.4, and
K51.031. The phase projections of the attractor were obtained for
each second iteration and corresponding approximating sets were
constructed for even~b! and odd~c! iterations.

FIG. 3. Two bands of the approximating attracting set with
v5610/987 for the attractor forV50.5, A50.4, K51.031.
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emerges~for K>1.520 the largest nonzero Lyapunov expo-
nent becomes positive!. Probably, the arising of SNA for the
second time precedes chaos.

Thus, we have considered one of the possible bifurca-
tional sequences for the transition from the smooth ergodic
torus to chaos: the destruction of the torus via the band merg-
ing crisis and development of SNA; degradation of SNA to a
piecewise differentiable manifold with a finite number of
points of discontinuity; the fractalization of the attractor for
the second time and the appearance of the chaotic attractor.
However, SNA arisen via the band merging is not obliged to
degenerate to the regular attractor and can develop immedi-
ately to the chaotic attractor. Such a scenario takes place, for
example, forV50.5, A50.15 with the increase of the pa-
rameterK. The destruction of the invariant curve and the
appearance of SNA can also be the result of merging of two
different tori coexisting in the phase space of the system. The
crisis of the torus in such a case is also connected with the
separatrix destruction and it is similar to the band merging
crisis described above. In the system~1! the merging crisis of
two different tori is observed, for example, forV50.5,
A50.3. For 1.04,K,1.05 two invariant curves 2T1

2 and
2T2

2 possessing the mutual symmetry (X→12X;
Z→Z10.5) merge together. The arisen fractal set gradually
transforms to chaos.

Figure 5 shows the fragment of the bifurcation diagram of
the system~1! on the parameter plane (A,K) for V50.5.
The following bifurcation lines are shown on the diagram:
l 1 is the line of the band merging of the invariant curve;l 2 is
the line of merging of two different invariant curves;l 3 is the

chaos boundary~it corresponds to the appearance of the posi-
tive Lyapunov exponent!. The regions with different dynam-
ics are marked by the following numbers: 1 is the region
where the smooth invariant curve 2T2 exists; 2 is the region
where either the SNA or piecewise differentiable attractor is
observed; 3 is the chaotic region. The line of the band merg-
ing l 1 crosses the chaos boundaryl 3 . It means that the band
merging crisis does not always precede the appearance of
chaos. How is the invariant curve destroyed in this case?
Evidently it is destroyed as a result of the gradual fractaliza-
tion process described in@3#. In Fig. 5 the curvel 4 is the
boundary of the appearance of SNA via gradual fractaliza-
tion.

Let us consider in detail the process of gradual fractaliza-
tion of the ergodic invariant curve. It is convenient to choose
V50.1 because the invariant curve has one band. The am-
plitude of excitation is fixed (A50.3) and the nonlinearity
parameterK is changed. With the increase ofK the distor-
tions of the invariant curve are observed. The so-called torus
oscillations take place@3#. The scale of these oscillations
becomes smaller and smaller until the invariant curve is de-
stroyed. ForK5Kcr.2.0295 the largest nonzero Lyapunov
exponentl1 becomes positive. The trajectory divergence ap-
pears. Does the fractal set arise at the same moment or does
it happen earlier? In other words, does the strange nonchaotic
attractor precede chaos? According to@4# the fractal set
emerges only on the chaos boundary and, therefore, SNA
exists for only one value ofK ~for the fixed value ofA).
However, in spite of the results of the precise numerical in-
vestigations given in@4# such a conclusion causes doubt.
Figure 6 showsZX projections of attractors and their ap-
proximating sets for the rational approximationv5610/987
andK52.029~a!, K52.050~b!. In case~a! the largest non-
zero Lyapunov exponent is negative and equals
l1520.011489. Case~b! corresponds to the chaotic dynam-
ics with l1510.048767. The approximating sets in cases
~a! and ~b! are not apparently everywhere differentiable
manifolds and this confirms the nonsmooth properties of the
attracting set.

Let us consider the largest Lyapunov exponentl1
(k) ,

FIG. 4. Map Gk(X) for v5610/987, V50.5, A50.4,
K51.031, andZ050 ~a!; Z050.00014~b!.

FIG. 5. The fragment of the bifurcation diagram on theA-K
parameter plane forV50.5.
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which characterizes the stability of motion corresponding to
the rational approximation ofvk5Fk /Fk11 . The calcula-
tions ~they were performed forv5610/987 and 987/1597!
for K52.020 and 2.029 show that the Lyapunov exponent
l1
(k) can be both positive and negative depending on the

choice of the initial phaseZ0 . The dependence ofl1
(k) on

Z0 obtained for the rational approximationv5610/987 and
for the three values of nonlinearity parameterK52.020,
K52.029, andK52.050 are presented in Figs. 7~a!–7~c!,
respectively. In cases~a! and ~b! when SNA exists the
Lyapunov exponentl1

(k) changes its sign depending onZ0 .
Hence, for some values ofZ0 the mapGk(X) has chaotic
dynamics. The number of points ofZ0 for which l1

(k).0
increases asK approaches the critical valueKcr correspond-
ing to the transition to chaos. The Lyapunov exponentl1 of

the ergodic motion is like the result of averaging the
Lyapunov exponentl1

(k) over all values ofZP@0,1/Fk11#.
While l1

(k),0 for most values ofZ0 , the Lyapunov expo-
nentl1 of ergodic motion remains negative. When the set of
Z0 for which l1

(k)(Z0).0 begins to prevail the ergodic mo-
tion becomes chaotic. Figure 7~c! corresponds to the chaotic
attractor in the case when the conditionl1

(k)(Z0).0 is ful-
filled for all Z0 .

Thus, in cases~a! and ~b! the local divergence of trajec-
tories on the attractor takes place though the global trajectory
divergence is absent. The attractor in such a case can be
neither chaotic nor regular. Hence, we can propose that the
attractor forK>2.020 is strange and the fractalization pre-
cedes chaos. The transition to chaos is realized gradually via
the appearance of the local trajectory divergence.

The Lyapunov exponentl1
(k) mentioned above has a simi-

lar sense to the local Lyapunov exponent introduced in@18#
and the transient Lyapunov exponent@19#. In fact, for the
calculation of the Lyapunov exponentl1 of ergodic motion

FIG. 6. XZ projections of the attractors and their approximating
sets with v5610/987 for V50.1, A50.3, andK52.029 ~a!;
K52.050~b!.

FIG. 7. The largest Lyapunov exponent of the trajectory as func-
tion of initial phase@v5610/987,V50.1, A50.4, andK52.029
~a!; K52.05 ~b!#.
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during the finite time the result will be close tol1
(k) because

the points of the attractor received by iteration during some
time will lie near to the points of the approximating set. As
shown in @18# the presence of the positive local Lyapunov
exponent is the sufficient condition for the existence of the
fractal set~though it is not necessary!.

IV. CONCLUSIONS

The fulfilled investigations allow one to conclude that
there are two universal routes to the destruction of an ergodic
two-dimensional torus:

~1! The crisis of the torus~merging of either two bands of
the doubled torus or of two different tori!. The torus crisis
results in the instantaneous appearance of a strange noncha-
otic attractor. Further, SNA either transforms to a chaotic
attractor or degenerates to the regular attractor, which is not
homeomorfic to the torus.~2! The gradual fractalization of
the torus leads to the appearance of SNA, which further
transforms to chaos.

Thus, the destruction of the ergodic torus always results in
the appearance of a fractal set without trajectory divergence,
which can then develop to chaos. Therefore, the regime of
SNA is typical for systems with quasiperiodic excitation. The
chaotization of motion on the strange attractor is accom-
plished gradually, beginning with the appearance of the local
trajectory divergence, which becomes prevalent over all at-
tractors with the transition to chaos. The results obtained for
other model systems confirm these conclusions@15#.
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